Pre-loading of chlorophyll synthase with tetraprenyl diphosphate is an obligatory step in chlorophyll biosynthesis.

نویسندگان

  • Heidi C Schmid
  • Valentina Rassadina
  • Ulrike Oster
  • Siegrid Schoch
  • Wolfhart Rüdiger
چکیده

The reaction of recombinant chlorophyll synthase from Avena sativa, expressed in Escherichia coli, was investigated. To verify the identity of the recombinant and native enzymes, reaction rates were determined for both enzyme preparations with several chlorophyllide analogs. The rates of esterification of these modified substrates ranged from 0 to 100% of the rate with the natural substrate, and were nearly identical for both enzyme preparations. The Lineweaver-Burk plot for variation of both chlorophyllide a and phytyl diphosphate concentration showed parallel lines, indicative of a 'ping-pong' mechanism. Pre-incubation with phytyl diphosphate exhibited an initial rapid reaction phase, which did not occur after pre-incubation with chlorophyllide. We conclude that the tetraprenyl diphosphate must bind to the enzyme as the first substrate and esterification occurs when this pre-loaded enzyme meets the second substrate, chlorophyllide. Approximately 10-17% of the recombinant enzyme were pre-loaded with phytyl diphosphate under the experimental conditions. The rapid reaction phase is also observed for the chlorophyll synthase reaction in etiolated barley leaves in addition to the well-known slow phase. This indicates that pre-loading of the enzyme with tetraprenyl diphosphate is also the basis for the reaction in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice.

In plants, geranylgeranyl diphosphate (GGPP) is produced by plastidic GGPP synthase (GGPPS) and serves as a precursor for vital metabolic branches, including chlorophyll, carotenoid, and gibberellin biosynthesis. However, molecular mechanisms regulating GGPP allocation among these biosynthetic pathways localized in the same subcellular compartment are largely unknown. We found that rice contain...

متن کامل

Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis.

Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect path...

متن کامل

Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content.

Solanesol is a noncyclic terpene alcohol that is composed of nine isoprene units and mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.). In the present study, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify putative solanesol biosynthesis genes. Six 1-deoxy-d-xylulose 5-phosphate synthase (DXS), two 1-deoxy-d-xylulose 5-phosphate reduc...

متن کامل

Synergistic substrate inhibition of ent-copalyl diphosphate synthase: a potential feed-forward inhibition mechanism limiting gibberellin metabolism.

Gibberellins (GAs) or gibberellic acids are ubiquitous diterpenoid phytohormones required for many aspects of plant growth and development, including repression of photosynthetic pigment production (i.e. deetiolation) in the absence of light. The committed step in GA biosynthesis is catalyzed in plastids by ent-copalyl diphosphate synthase (CPS), whose substrate, (E,E,E,)-geranylgeranyl diphosp...

متن کامل

Effect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains

CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological chemistry

دوره 383 11  شماره 

صفحات  -

تاریخ انتشار 2002